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We study two-dimensional spatiotemporal dynamics in an optical system of two identical nonlinear films
irradiated from both sides by equal plane waves and show that a wide variety of chaotic behaviors can be
obtained near the subcritical pitchfork bifurcation point. The regimes arising in the vicinity of asymmetrical
steady state depend on stability of the symmetrical steady state at the same driving field, on interactions of
Hopf and Turing instabilities occurring at the asymmetrical branch of solutions, and on a transverse wave
number of the Hopf instability band center. The wave number is controlled by a phase shift of the field passed
between two films, and the relative order of the Turing and Hopf bifurcations is controlled by a diffusion of
charge carrier in a semiconductor media. Chaotic oscillating patterns are formed mainly by transverse Hopf
modes rising due to a time delay in the system.
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I. INTRODUCTION

There are numerous works devoted to transverse pattern
formation in nonlinear optical systems. Two generic types of
bifurcations are responsible for static and dynamical patterns
arising from a homogeneous steady state. Those are Turing
and Hopf bifurcations, respectively. Simple periodic patterns,
such as static hexagons, are formed due to the developing of
several transverse static unstable modes inside the same in-
stability band [1]. More complicated structures can be
formed as a result of competition of modes inside two or
more bands[2].

In turn, domains where oscillatory instabilities take place
can be divided into homogeneous and space-periodic classes
depending on which oscillating Fourier mode has a maximal
gain: with zero or a finite wave number, correspondingly.
Below, the latter case is referred to as a transverse Hopf
instability band to distinguish it from the former homoge-
neous case(though the homogeneous Hopf band includes
also modes with finite wave numbers but with lesser gain
than the mode with zero wave number). An interaction of
Hopf modes from different bands or with Turing modes
strictly enlarges the list of possible behaviors. Traveling
waves, drifting rhombus, and winking hexagons were ob-
served as the result of resonant interaction under phase-
matching conditions[3–6]. In the general case the interplay
between Turing and Hopf modes can lead to more complex
dynamics. Thus near a codimension-2 point where thresholds
of Turing and homogeneous Hopf instabilities coincide
(“codimension-2 Turing-Hopf bifurcation” in the terminol-
ogy of Ref. [1]), different types of behaviors were obtained
in addition to the existence of the pure modes[7–10]: bista-
bility between the homogeneous Hopf branch of solutions
and either pure Turing or Hopf-Turing mixed-mode branches
and related localized structures; Turing-Hopf and subhar-
monic (resulting from self-induced subharmonic instabilities

of the pure steady and Hopf modes) mixed modes that may
become phase unstable giving rise to spatiotemporal chaos.

The purpose of the present paper is to analyze a compe-
tition between modes from the Turing and transverse Hopf
instability bands, in contrast to Refs.[7–10]. As a paradigm,
we consider an optical system consisting of two identical
nonlinear thin films irradiated from both sides by equal plane
waves. This system was introduced in Ref.[11] by Yu. A.
Logvin and A. M. Samson. Such phenomena as optical bi-
stability and symmetry breaking[12], static pattern forma-
tion [13], localized structures[14], homogeneous pulsing,
and chaotic temporal regimes[11] were found. Here we fo-
cus mainly on the vicinity of pitchfork bifurcation, where the
symmetrical steady state crosses the unsymmetrical branch.
Both Turing and Hopf instabilities may coexist at the asym-
metrical branch of solutions near this pitchfork bifurcations
point if it is subcritical. The presence of several steady-state
branches greatly increase the diversity of dynamics.

To control the system dynamics we change a coefficient
of charge carrier diffusion in semiconductor media and a
phase shift of field propagating through a linear medium be-
tween the films. It is shown that the phase shift controls the
value of transverse wave numbers of unstable modes. De-
pending on it, instabilities with the smallest transverse wave
numbers can arise via either Hopf or Turing bifurcation. The
diffusion coefficient can be used to control the threshold of
modulational instability changing the relative order between
Turing and Hopf instabilities. Various behaviors including
chaotic ones can be obtained near the codimension-2 bifur-
cation point. Among them there are regimes with spatial field
distribution appearing as coexisting domains with different
structures(for example, a vortex glass and “mosaiclike” pat-
terns). Comparison of two cases when the Turing instability
interacts with transverse or homogeneous Hopf instabilities
is done. The influence of a stability of the symmetrical
steady state coexisting with the asymmetrical one for taken
parameters is elucidated.

II. BASIC EQUATIONS

The system under study consists of two nonlinear thin
layers separated by a linear medium(Fig. 1). The nonlinear
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medium is considered in a two-level approximation. We sup-
pose the polarization relaxation time is much shorter than
other characteristic times in the system and adiabatically
eliminates the polarization of the medium:

r j = iejsnj − 1dQ, s1d

wherer j andej are the polarizations and fields normalized in
accordance with Ref.[13], j =1 for the left andj =2 for the
right film. Q=s1+iDd / s1+D2d ,nj are normalized population
differences,D is the frequency detuning between the incident
field and the maximum of the absorption line normalized to
the polarization relaxation rate.

In this approximation, the absorption line shape has Lo-
renz contourQ, that often used for the description of reso-
nant nonlinear media including semiconductors(see, for ex-
ample, Ref.[15]). In the last case the interaction of light with
the films is described by the equation[15]

ṅj = − nj −
ueju2snj − 1d

1 + D2 + DD'nj . s2d

Here,nj are carrier densities normalized to their values at
transparency,D is the correspondingly normalized carrier
diffusion coefficient,D'=]2/]x2+]2/]y2 is the Laplacian
over transverse coordinatesr'=hx,yj.

The field equations were obtained in Refs.[12,13] taking
into account both propagation through the nonlinear thin
films (the thickness of each layer is supposed much smaller
than a wavelength of incident field) and through the linear
gap between them, and have the following form:

He1std = ein1 − iar1std − reise−iu'iar2st − td,

e2std = ein2 − iar2std − reise−iu'iar1st − td,
J s3d

wherer,, s, and t stand, respectively, for losses, the phase
shift, and a time delay due to propagation in the linear gap,k
is the light wave number,u=sd/kdD', and a describes the
nonlinearity of the thin film[16],

Hein1 = e0
s+dstd + reise−iu'e0

s−dst − td,

ein2 = e0
s−dstd + reise−iu'e0

s+dst − td.
J s4d

ein1,ein2 are variables responsible for general contribution
of fields incident on each layer from both sides. In the case
of equal incident fields these variables are equal. Below we
consider only this case. We assume also that the incident

fields are spatially homogeneous and time independent.
Beside the adiabatic elimination of polarization, the sys-

tem (1)–(4) differs from ones considered earlier[12,13] by
including the diffusion term in Eq.(2).

III. STEADY STATES AND LINEAR
STABILITY ANALYSIS

In this section we consider the homogeneous steady states
of the system(1)–(4). For this case, the carrier densitiesnj
can be expressed via the fieldsej and parameters of the
system:

nj =
− 1

1 + bueju2
− 1, s5d

whereb=1/s1+D2d At that, Eqs.(3) are reduced to

5e1 = ein1 −
aQe1

1 + bue1u2
− reis aQe2

1 + bue2u2
,

e2 = ein2 −
aQe2

1 + bue2u2
− reis aQe1

1 + bue1u2
.6 s6d

Equations(6) can be written as a system of two cubic
equations versus field variables. The solution of these equa-
tions for particular values of the parameters is presented in
Fig. 2. A set of steady states is split into a symmetrical
branch withe1=e2 which exists for all values of the incident
field ein and asymmetrical one corresponding toe1Þe2 [12].
We focus on the case when the pitchfork bifurcation is sub-
critical as shown in Fig. 2 that can be realized for large
enough values of the nonlinearity parametera.

Using the standard procedure of variation of the steady
states, linearizing the system against variations(neglecting
the terms of the second-order infinitesimal) and searching the
solution of resulting system of differential equations in the
form

FIG. 1. The system consisting of two nonlinear films separated
by absorbing medium with complex refraction indexn-in8. d is the
distance between the films,E0

s+d ,E0
s−d are slow complex amplitudes

of fields incident into the system from the left and from the right,
E1

s+d ,E1
s−d are ones transmitted through the films, andE2

s−d ,E2
s+d are

the fields reaching the opposite film.

FIG. 2. Steady states of the system(2)–(4) for the following
parameters:a=20.0,D=2.0,r=0.5,s=0.9p. The closed loop repre-
sents asymmetrical steady statesse1Þe2d, whereas the open curve
corresponds to symmetrical steady statesse1=e2d. The region of
interest is enclosed in the rectangle in the inset.
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dxsr',td = dx0e
lt+ik'·r' s7d

[where dx=sdej ,dej
* ,dnjd are small deviations of the vari-

ables from steady state,j =1,2] we obtain the characteristic
quasipolynomial for determination of steady-states stability:

o
j=0

2

Pjsl,k'de−2jtl = 0, s8d

where Pjsl ,k'd are polynomials ofl with coefficients de-
pending onk'.

In Fig. 3, Turing stability boundaries[the conditionl=0
in Eq. (8)] for asymmetrical steady states are depicted. The
thinnest line corresponds to the case of the absence of diffu-
sion D=0, whereas the thickest one corresponds to the larg-
est diffusion considered in this paper. It can be seen that the
presence of diffusion leads to a decrease of the Turing un-
stable region. The transverse perturbations are damped more
for larger values of the transverse wave numberk'. This
action of the diffusion term is widely presented in the litera-
ture [2,3,17].

In Fig. 4, Turing stability boundaries for the same steady
states as in Fig. 3 andD=0 are shown for different values of
the phase shifts. The stability boundary fors=0.9p is de-
picted by the thinnest line, and the decreasing ofs is marked
by the increasing of thickness. Therefore for this range of
parameters, decreasings leads to drift of the stability bound-
aries in the direction of largek' giving the way to controlk'

of the unstable mode.
For the sake of clarity, we depicted in Figs. 3 and 4 only

changing of the Turing stability boundaries versus variation
of the control parameters. However, if the pitchfork bifurca-
tion is subcritical, Hopf instabilities can arise due to the time
delay [13]. The Hopf bifurcation boundaries[obtained from
the condition Rel=0, ImlÞ0 in Eq. (8)] are depicted by
thin lines in Fig. 5 and possess analogous properties. In this
picture, static stability boundaries are also shown by thick

lines. One can see that there are Hopf instability domains
which are not included in the Turing instability regions.

In dependence on the phase slippage, the instability do-
main with smallest values ofk' can be either a Turing or
Hopf one. Below, we consider the latter case presented in
Figs. 5 or 6(a)–6(c) and focus on the pair of Hopf and Turing
bifurcations that occur first when the input field amplitude is
decreased. At zero diffusion coefficient the upper threshold
for Turing instability is higher than the Hopf bifurcation
point, and the system demonstrates various static spatial
structures[13]. By changing the diffusion coefficient, we can
decrease the range of steady states unstable to transverse
perturbations(both Hopf and Turing). The transverse insta-
bilities are decreased more for larger values of the transverse
wave number of corresponding transverse perturbations. We
can therefore change the relative order between the two bi-
furcations as shown in Fig. 6. Similar changes of critical
points of Turing and Hopf instabilities were obtained for
reaction-diffusion models[7,8] and for an optical parametric
oscillator [9,10].

FIG. 3. Turing stability boundaries of the asymmetrical branch
of the steady states enclosed in the rectangle in Fig. 2. The param-
eter values are as in Fig. 2. The thinnest line corresponds to the
diffusion coefficientD=0.0, the line of the medium thickness to
D=0.1 and the bold one toD=0.5.

FIG. 4. Turing stability boundaries of the asymmetrical branch
of the steady states(in the rectangle in Fig. 2) with changing the
phase slippage. The thinnest line corresponds tos=0.9p, the line of
the medium thickness tos=0.8p, and the thickest line tos=0.7p.
D=0.0 and the other parameter values are as in Fig. 3.

FIG. 5. Hopf and Turing stability boundaries forD=0.25,t
=5.0, and the other parameter values as in Fig. 2. Hopf boundaries
are marked by thin lines whereas Turing boundaries are marked by
bold ones.
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It is worth noting a difference between the two cases pre-
sented in Figs. 5 and 6. Fora=20 (Fig. 5), the unstable part
of the asymmetrical steady-state branch coexists with stable
symmetrical states. This case is realized when the upper bi-
furcation point of the first instability band of the asymmetri-
cal state is below the pitchfork bifurcation point. If the non-
linearity parameter is decreased as for Fig. 6, the
asymmetrical branch changes its shape by such a way that
the top of the first unstable band of asymmetrical states co-
exists with the unstable symmetrical branch. We show below
that the stability of symmetrical steady states strongly influ-
ences the system behavior originating from an unstable
asymmetrical steady state.

IV. NUMERICAL SIMULATIONS

In this section, we consider the spatiotemporal regimes
obtained in the system under consideration. In numerical
simulations, the split-step method has been used with fast
Fourier transform on every step of integration that implies
periodic boundary conditions. The grid size 1283128 was
used. An asymmetrical steady state is taken as the initial
condition for further simulations with small spatial noise
added. Evidently, this precision is enough for regimes
when only Hopf modes are active with comparatively small
wave numbers as in Figs. 9(a), 9(b), and 9(d). Numerical
integration of the system with parameters of Figs. 8(c) and
10 have been fulfilled also with higher precision using a
2563256 grid, that have confirmed the obtained results.

As shown in the previous section, by changing the diffu-
sion coefficientD we can obtain codimension-2 bifurcation
point where thresholds of Turing and transverse Hopf insta-
bilities coincide [Fig. 6(b)]. For those parameters and the
operating point situated slightly below the instability thresh-
old, the system tends to the unstable homogeneous steady
state at first, but then begins to withdraw from it. The field
evolution after that transient stage is shown in Fig. 7(a). The

behavior consists of fast, almost periodic, temporal oscilla-
tions with a low frequency chaotic envelope. The frequency
of fast variations in Fig. 7(a) is close to the Hopf frequency
at the boundary of the unstable band in Fig. 6(b). The phase
portrait of the regime for a single point of the transverse
plane is presented in Fig. 7(b). The chaotic “mosaiclike” spa-
tial field distribution shown in Fig. 8(a) is formed. However,
this state is not ultimate. There are self-organization pro-
cesses in the system: in the long run, rotating spirals are
spontaneously nucleated in the transverse plane and grow
until a certain domain of the entire space is filled. The dy-
namics of the remaining part is held as before. The evolution
of the spiral part is similar to the transition from a turbulent
regime to a vortex glass[18]. The snapshot of transverse
distribution of the field at this stage is shown in Fig. 8(b). In
domains filled with spirals the time envelope becomes more
smooth and the spatial picture is more ordered. Nevertheless,
this regime remains slightly chaotic during all times of cal-
culation.

The far field evolution of the above described dynamics is
the following. When the system goes away from the unstable
steady state, a ring of Fourier harmonics is excited with wave
numbers close to the wave number of the transverse Hopf

FIG. 6. (a), (b), (c) The field range in the left film near threshold
of modulational instability and the parts of Hopf(left band) and
Turing (right band) instability domains.(d), (e), (f) The azimuthally
averaged spatial structure factorIsu' ,td corresponding to the far
field presented in Figs. 9(a)–9(c). The parameters area=18.0;D
=0.5 (a), (d), 0.35 (b), (e), 0,15 (c), (f); the other parameter values
are as in Fig. 5.

FIG. 7. (a) Dependence of the field in a single point of trans-
verse section of the left film versus the time.(b) The corresponding
trajectory in the phase space. The parameter values are as in Fig.
6(b), ein=10.88, the initial valuee1=5.6.

FIG. 8. Snapshots of the field in the left film.(a), (b) ein

=10.88, the initial valuee1=5.6:t=1500 (a), t=40 000(b); (c) D
=0.15,ein=10.89, the initial value e1=5.7,t.20 000; (d) D
=0.29, s=p ,ein=12.36, the initial valuee1=5.7,t=20 000; the
other parameter values are as in Fig. 7.
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mode. During the mosaiclike period[Fig. 8(a)] the ring
evolves to a disc shape. Near and far fields at this stage of
evolution are similar to that predicted for a CO2 laser with
saturable absorber operating far from the laser threshold
[19]. On the last stage, the ring becomes again more visible
though the mode excitement is not uniform along the ring
[Fig. 9(b)].

It is worth noting that the modulus of space Fourier trans-
form of the fielde1 used for calculation of the far field in a
certain moment of time could be used to determine the struc-
ture factor[20,21]. This technique is useful for characteriza-
tion of spatial and temporal scales and correlations of a cha-
otic state. To compare numerical results with stability
analysis, we determine here only an instantaneous azimuth-
ally averaged spatial structure factorIsk' ,td [21]. This factor
for Fig. 8(a) clearly indicates that only transverse Hopf in-
stability band is involved into dynamics of vortexes coexist-
ing with the mosaiclike turbulence[compare Figs. 6(b) and
6(e)]. The field behavior in the second layer is similar but has
another amplitude of oscillations(asymmetrical regime).

If the system operates closer to the maximum of the trans-
verse Hopf instability band in Fig. 6(b), then the traveling
rolls are formed. The time of their formation is compara-
tively short. The field evolution is approximately the same as
in the previous case. Chaotic motion is produced evidently
by defects, the number of which is reduced with time. Simi-
lar behaviors were observed also in the whole range of field
amplitudes presented in Fig. 6(a) for a larger value of the
diffusion coefficient when the critical point of transverse
Hopf instability is higher than the Turing bifurcation point.
Those structures are created mainly by transverse Hopf
modes as shown in Figs. 6(d) and 9(a). In comparison with
Fig. 9(b), only two segments of the ring are excited giving
evidence of a dynamically induced anisotropy in the system.

If the diffusion is reduced so that the Turing critical point
is the first to be observed at decreasing the input field[Fig.
6(c)], obtained spatial structures are approximately stationary
(the amplitude of temporal pulsations.10−4) and resemble
disordered spaced defect chains or clusters typical for an
isotropic system[1] [Fig. 8(c)]. At that, a ring of Fourier
modes is excited again[Fig. 9(c)], but its characteristic wave
number is between centers of the Hopf and Turing instability
bands[Fig. 6(f)]. The ring is comparatively wide and occu-

pies a part of both bands. Those features indicate a formation
of mixed modes like that obtained near a codimensional-2
point in the case of the homogeneous Hopf instability band
[1,7–10]. There is also the second weak ring with a double
wave number in Fig. 9(c).

To compare both cases of the instability interactions in-
volving the homogeneous or transverse Hopf instability in
more detail, we change the phase slippages and hence shift
the domain of instability in respect tok' keeping the condi-
tion for occurrence of the codimensional-2 point by changing
diffusion D. Thus for s=p the system is dynamically un-
stable in respect to perturbations withk' belonging to a nar-
row band centered atk'=0 (the homogeneous Hopf instabil-
ity band). Near the instability threshold we have observed
that the zero Fourier harmonic plays the main role in dynam-
ics and a limit cycle is developed with a very weak long-
wavelength spatial modulations. The limit cycle is a sym-
metrical statese1=e2d in contrast with the regimes described
above. When the operating point is shifted more from the
threshold, this state loses stability keeping the symmetry and
a new complex spatiotemporal behavior is observed after a
long transient period. Its evolution in time consists of fast
and slow oscillations as presented in Fig. 7; the spatial dis-
tribution shown in Fig. 8(d) is characterized by moving
bright separate curves on the almost homogeneous back-
ground. The main active part in the space spectrum is con-
densed near zero wave number[Fig. 9(d)].

It is worthwhile to remind one that the above scenarios
have been obtained when a top of the Hopf instability do-
main corresponds to a value of incident field higher than the
pitchfork bifurcation point, so the homogeneous symmetrical
state existing at thisein is unstable. In the opposite case
which is realized for higher values of the nonlinearity param-
etera as in Fig. 2, perfect rotating spirals have been obtained
instead of rolls near the maximum of the transverse Hopf
instability band when it is higher than the maximum of the
Turing band. Obtained numerical results demonstrate that
starting from the unstable asymmetrical steady state, the field
at a considerable part of the transverse section tends to the
stable homogeneous symmetrical state. The remaining pieces
of the spatial field distribution are kept asymmetrical and
evolve to bright curves that are then transformed into rotat-
ing spirals. From a certain moment of time, each of the spi-
rals occupies a constant domain. The time evolution of the
field in a single point of the transverse cross section is a limit
cycle with the frequency close to the Hopf one. However,
with the decrease of the incident field, this regime becomes
unstable and spirals untwist into traveling rolls as in the case
a=18.

The field distribution near a codimension-2 point fora
=20 also differs from that presented in Fig. 8(b), though
temporal oscillations of a single point are similar. Instead of
vortexes coexisting with chaotic domains, narrow traveling
stripes coexisting with small domains of more complex be-
havior and with almost homogeneous domains are observed
[Fig. 10(a)]. Correspondingly, two directions of wave vectors
can be distinguished in the far field[Fig. 10(c)]. Besides,
there are space harmonics close to zero wave number that are
evidently responsible for long-wavelength perturbations of
the background.

FIG. 9. Transverse far-field distribution forD=0.5 (a), 0.35(b),
0,15(c), 0.29(d); s=0.9p (a)–(c), p (d); the other parameter values
are as in Fig. 6 andt=40 000(a), (b), 20 000(c), (d).
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The almost stationary space distributions for this value of
a and smaller diffusion[Fig. 10(b)] is determined mainly by
two rings as fora=18 [Figs. 8(c) and 9(c)]. But in contrast
with that case, only eight spots on every ring in the far field
are excited[Fig. 10(d)]. As a result, the structure in Fig.
10(b) looks more regular than in Fig. 8(c). It includes com-
paratively large domains with rolls the incline of which is
changed from one domain to another.

When the Turing instability band competes with the ho-
mogeneous Hopf instability bandss=pd for a=20 a sym-
metrical homogeneous cyclese1=e2d is observed near the
codimension-2 point. This cycle loses stability with the de-
creasing of the incident field and the system settles down on
the stable homogeneous symmetrical steady state.

V. DISCUSSION AND CONCLUSION

It is known that chaotic modulations of much faster peri-
odical regime are encountered in time-delay optical systems,
both spatiotemporal[22] and purely temporal[23,24] rather
than in mean-field models. One of the reasons is that Hopf
instability bands disappear for small delay. Another one is
that a time-delay system is effectively infinite dimensional,
which gives a possibility for chaotic behavior.

In this work, we have considered the system of two non-
linear thin films, separated by a linear medium. The delay in
the system is caused by a time passage of the field between
the layers. We focus on the case when the fields incident
from both sides on the system are equal. Nevertheless, for
certain parameters the system can have along with symmetri-
cal homogeneous steady statesse1=e2d asymmetrical ones
arising due to a pitchfork bifurcation(Fig. 2). We have dem-
onstrated that this region is rich in respect to different insta-
bilities if the pitchfork bifurcation is subcritical. The delay
causes Hopf instabilities at the asymmetrical branch of solu-
tions besides the Turing instability existing at zero delay. A
Hopf bifurcation occurs with zero or a finite transverse num-
ber depending on the phase slippage between the films. Rela-

tive order of the Hopf and Turing bifurcations is driven by
diffusion in a nonlinear media. A variety of spatiotemporal
behaviors have been observed that could be classified by the
next manner:

I. Interplay between the Turing and transverse Hopf in-
stabilities results only in asymmetrical behaviors.

A. Region of parameters where unstable homogeneous
asymmetrical steady states coexist with unstable symmetrical
statessa=18d.

(1) Hopf modes are dominant: traveling rolls with de-
fects. As known, defects often arise from long-wavelength
disturbances[1,25,26].

(2) Codimension-2 point:(i) traveling rolls near the criti-
cal point;(ii ) transition with decrease of the incident field to
the defect mediated turbulence coexisting in two configura-
tions, a vortex glass and mosaiclike patterns. This state is
similar to the coexisting of a vortex glass and vortex liquid
obtained in Ref.[27].

(3) Turing modes are dominant: almost stationary clus-
ters of defects.

B. Region of parameters where unstable homogeneous
asymmetrical steady states coexist with stable symmetrical
statessa=20d.

(1) Hopf modes are dominant:(i) perfect vortex near the
critical point and(ii ) traveling rolls far from it.

(2) Codimension-2 point: coexisting of traveling stripes
with chaotic and homogeneous domains.

(3) Turing modes are dominant: domains with almost sta-
tionary reoriented oblique rolls with boundaries of a “zig-
zag” type or destroyed by point defects.

II. When the interplay between the Turing and homoge-
neous Hopf instability takes place, only symmetrical behav-
iors have been observed for the case of codimension-2 point:
homogeneous limit cycle near the critical point; chaotic
moving bright curves on the homogeneous background(at
a=18) or the homogeneous steady states(at a=20) far from
the bifurcation.

So, behavior of the considered system depends not only
on the interaction of Turing and Hopf instabilities of asym-
metrical steady states, but also on a type of the Hopf bifur-
cation (homogeneous or space-periodic) at the center of the
instability band and the stability of homogeneous symmetri-
cal steady states existing at taken parameters. Potentialities
to change those characteristics open opportunities to drive
the system behavior from a homogeneous state to turbulence
with different space structures. A better understanding of
processes occurring in the system along with changes of the
parameters could be achieved by a weak nonlinear analysis.
However, that task presents a separate difficult problem since
consideration of two coupled complex Swift-Hohenberg
equations for fields in each layer is necessary. Moreover,
taking into account that the carrier relaxation time is compa-
rable with the time delay for the present parameters, those
equations must be coupled to a mean flow as it takes place
for a class B laser[28]. Such investigations are planned in
the near future.

FIG. 10. Snapshots of the near(a), (b) and far(c), (d) fields in
the left film. (a), (c) D=0.29,ein=11.57, the initial valuee1

=6.21,t=20 000; (b), (d) D=0.25,ein=11.59, the initial valuee1

=6.25,t.20 000; the other parameter values are as in Fig. 5.
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